The basal forebrain modulates spontaneous activity of principal cells in the main olfactory bulb of anesthetized mice

نویسندگان

  • Xiping Zhan
  • Pingbo Yin
  • Thomas Heinbockel
چکیده

Spontaneous activity is an important characteristic of the principal cells in the main olfactory bulb (MOB) for encoding odor information, which is modulated by the basal forebrain. Cholinergic activation has been reported to inhibit all major neuron types in the MOB. In this study, the effect of diagonal band (NDB) stimulation on mitral/tufted (M/T) cell spontaneous activity was examined in anesthetized mice. NDB stimulation increased spontaneous activity in 66 MOB neurons which lasted for 2-35 s before returning to the baseline level. The majority of the effected units showed a decrease of interspike intervals (ISI) at a range of 8-25 ms. Fifty-two percent of NDB stimulation responsive units showed intrinsic rhythmical bursting, which was enhanced temporarily by NDB stimulation, whereas the remaining non-rhythmic units were capable of synchronized bursting. The effect was attenuated by scopolamine in 21 of 27 units tested. Only four NDB units were inhibited by NDB stimulation, an inhibition that lasted less than 10 s. The NDB stimulation responsive neurons appeared to be M/T cells. Our findings demonstrate an NDB excitation effect on M/T neurons that mostly requires muscarinic receptor activation, and is likely due to non-selectivity of electrical stimulation. This suggests that cholinergic and a diverse group of non-cholinergic neurons in the basal forebrain co-ordinately modulate the dynamics of M/T cell spontaneous activity, which is fundamental for odor representation and attentional perception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optogenetic activation of basal forebrain cholinergic neurons modulates neuronal excitability and sensory responses in the main olfactory bulb.

The main olfactory bulb (MOB) in mammals receives massive centrifugal input from cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, the activity of which is thought to be correlated with animal behaving states, such as attention. Cholinergic signals in the bulb facilitate olfactory discrimination and learning, but it has remained controversial...

متن کامل

Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.

The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that...

متن کامل

Neurophysiology of magnocellular forebrain inputs to the olfactory bulb in the rat: frequency potentiation of field potentials and inhibition of output neurons.

Basal forebrain nuclei send projections, including cholinergic fibers, to forebrain cortical targets. These systems have been associated with several important functions, but their physiological actions are poorly understood. We have studied the neurophysiological characteristics of one of these systems, the projection from the nucleus of the horizontal limb of the diagonal band (HDB) to the ma...

متن کامل

Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination.

Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fun...

متن کامل

P11: Assess the Electrophysiological Activity of Olfactory Bulb in the Animal Model of PTSD and its Relationship with Neuroinflammation in the Olfactory Bulb

Post-traumatic stress disorder (PTSD) is a mental health condition that's triggered by a terrifying event - either experiencing it or witnessing it. In addition to the relationship between PTSD and neuroinflammation, research indicates that olfactory bulb are effective in anxiety disorders. The aim of this study was to assess the electrophysiological activity of olfactory bulb in the animal mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013